import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 데이터셋
iris = sns.load_dataset('iris')
titanic = sns.load_dataset('titanic')
tips = sns.load_dataset('tips')
flights = sns.load_dataset('flights')
x = iris.petal_length.values
sns.rugplot(x)
<matplotlib.axes._subplots.AxesSubplot at 0x1a175ec950>
sns.kdeplot(x)
<matplotlib.axes._subplots.AxesSubplot at 0x1a18ce6890>
sns.distplot(x, rug=True, kde=True, bins=50)
<matplotlib.axes._subplots.AxesSubplot at 0x1a18d9d1d0>
plt.hist(x, bins=50)
(array([ 2., 2., 7., 13., 13., 11., 0., 2., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 2., 0., 2., 2., 1., 3., 5.,
3., 6., 4., 8., 3., 5., 4., 9., 8., 2., 2., 2., 9.,
3., 3., 2., 2., 3., 1., 1., 0., 1., 2., 1.]),
array([1. , 1.118, 1.236, 1.354, 1.472, 1.59 , 1.708, 1.826, 1.944,
2.062, 2.18 , 2.298, 2.416, 2.534, 2.652, 2.77 , 2.888, 3.006,
3.124, 3.242, 3.36 , 3.478, 3.596, 3.714, 3.832, 3.95 , 4.068,
4.186, 4.304, 4.422, 4.54 , 4.658, 4.776, 4.894, 5.012, 5.13 ,
5.248, 5.366, 5.484, 5.602, 5.72 , 5.838, 5.956, 6.074, 6.192,
6.31 , 6.428, 6.546, 6.664, 6.782, 6.9 ]),
<a list of 50 Patch objects>)
titanic
survived | pclass | sex | age | sibsp | parch | fare | embarked | class | who | adult_male | deck | embark_town | alive | alone | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | male | 22.0 | 1 | 0 | 7.2500 | S | Third | man | True | NaN | Southampton | no | False |
1 | 1 | 1 | female | 38.0 | 1 | 0 | 71.2833 | C | First | woman | False | C | Cherbourg | yes | False |
2 | 1 | 3 | female | 26.0 | 0 | 0 | 7.9250 | S | Third | woman | False | NaN | Southampton | yes | True |
3 | 1 | 1 | female | 35.0 | 1 | 0 | 53.1000 | S | First | woman | False | C | Southampton | yes | False |
4 | 0 | 3 | male | 35.0 | 0 | 0 | 8.0500 | S | Third | man | True | NaN | Southampton | no | True |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 0 | 2 | male | 27.0 | 0 | 0 | 13.0000 | S | Second | man | True | NaN | Southampton | no | True |
887 | 1 | 1 | female | 19.0 | 0 | 0 | 30.0000 | S | First | woman | False | B | Southampton | yes | True |
888 | 0 | 3 | female | NaN | 1 | 2 | 23.4500 | S | Third | woman | False | NaN | Southampton | no | False |
889 | 1 | 1 | male | 26.0 | 0 | 0 | 30.0000 | C | First | man | True | C | Cherbourg | yes | True |
890 | 0 | 3 | male | 32.0 | 0 | 0 | 7.7500 | Q | Third | man | True | NaN | Queenstown | no | True |
891 rows × 15 columns
# Count Plot
sns.countplot(x='class', data=titanic)
<matplotlib.axes._subplots.AxesSubplot at 0x1a22bd7810>
tips
total_bill | tip | sex | smoker | day | time | size | |
---|---|---|---|---|---|---|---|
0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 |
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 |
4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 |
... | ... | ... | ... | ... | ... | ... | ... |
239 | 29.03 | 5.92 | Male | No | Sat | Dinner | 3 |
240 | 27.18 | 2.00 | Female | Yes | Sat | Dinner | 2 |
241 | 22.67 | 2.00 | Male | Yes | Sat | Dinner | 2 |
242 | 17.82 | 1.75 | Male | No | Sat | Dinner | 2 |
243 | 18.78 | 3.00 | Female | No | Thur | Dinner | 2 |
244 rows × 7 columns
sns.countplot(x='day', data=tips)
<matplotlib.axes._subplots.AxesSubplot at 0x1a22cae310>
sns.jointplot(x='sepal_length', y='sepal_width', data=iris, kind='kde')
<seaborn.axisgrid.JointGrid at 0x1a2309c450>
sns.pairplot(iris)
<seaborn.axisgrid.PairGrid at 0x1a23373590>
sns.pairplot(iris, hue='species')
<seaborn.axisgrid.PairGrid at 0x1a23cd8590>
iris.head(10)
sepal_length | sepal_width | petal_length | petal_width | species | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
1 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
2 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
3 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
4 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
5 | 5.4 | 3.9 | 1.7 | 0.4 | setosa |
6 | 4.6 | 3.4 | 1.4 | 0.3 | setosa |
7 | 5.0 | 3.4 | 1.5 | 0.2 | setosa |
8 | 4.4 | 2.9 | 1.4 | 0.2 | setosa |
9 | 4.9 | 3.1 | 1.5 | 0.1 | setosa |
# 2차원 카테고리
titanic_size = titanic.pivot_table(index='class', columns='sex', aggfunc='size')
titanic_size
sex | female | male |
---|---|---|
class | ||
First | 94 | 122 |
Second | 76 | 108 |
Third | 144 | 347 |
sns.heatmap(titanic_size, cmap='summer', annot=True, fmt='d')
<matplotlib.axes._subplots.AxesSubplot at 0x1a245e0250>
sns.barplot(y='day', x='total_bill', data=tips, hue='sex')
<matplotlib.axes._subplots.AxesSubplot at 0x1a25408550>
sns.boxplot(x='day', y='total_bill', data=tips, hue='sex')
<matplotlib.axes._subplots.AxesSubplot at 0x1a2562b910>
'분석 > 파이썬 Python' 카테고리의 다른 글
Python : 순열검정 (비모수) (0) | 2024.01.27 |
---|---|
Python : 위도.경도로 TimeZone 구하기 (0) | 2020.03.10 |
python : pd.to_numeric() VS astype(np.float64) (1) | 2019.11.27 |
Python : Pandas Visualization (0) | 2019.11.25 |
Python : timedelta(months=3) 방법 (0) | 2019.11.12 |